首頁 > 企業(yè)動態(tài) > 島津紅外光譜儀的工作原理
企業(yè)動態(tài)
島津紅外光譜儀的工作原理
更新時間:2017-04-25 點擊次數(shù):1513次
島津紅外光譜儀的研究始于 20 世紀初,自1940 年紅外光譜儀問世,紅外光譜在有機化學研究中廣泛應用。新技術 (如發(fā)射光譜、光聲光譜、色紅聯(lián)用等) 出現(xiàn),使紅外光譜技術得到發(fā)展??梢杂脕頇z測物質(zhì)具有的化學鍵及官能團。
島津紅外光譜儀的原理
當一束具有連續(xù)波長的紅外光通過物質(zhì),物質(zhì)分子中某個基團的振動頻率或轉(zhuǎn)動頻率和紅外光的頻率一樣時,分子就吸收能量由原來的基態(tài)振(轉(zhuǎn))動能級躍遷到能量較高的振(轉(zhuǎn))動能級,分子吸收紅外輻射后發(fā)生振動和轉(zhuǎn)動能級的躍遷,該處波長的光就被物質(zhì)吸收。所以,紅外光譜法實質(zhì)上是一種根據(jù)分子內(nèi)部原子間的相對振動和分子轉(zhuǎn)動等信息來確定物質(zhì)分子結(jié)構(gòu)和鑒別化合物的分析方法。將分子吸收紅外光的情況用儀器記錄下來,就得到紅外光譜圖。紅外光譜圖通常用波長(λ)或波數(shù)(σ)為橫坐標,表示吸收峰的位置,用透光率(T%)或者吸光度(A)為縱坐標,表示吸收強度。
當外界電磁波照射分子時,如照射的電磁波的能量與分子的兩能級差相等,該頻率的電磁波就被該分子吸收,從而引起分子對應能級的躍遷,宏觀表現(xiàn)為透射光強度變小。電磁波能量與分子兩能級差相等為物質(zhì)產(chǎn)生紅外吸收光譜必須滿足條件之一,這決定了吸收峰出現(xiàn)的位置。
紅外吸收光譜產(chǎn)生的第二個條件是紅外光與分子之間有偶合作用,為了滿足這個條件,分子振動時其偶極矩必須發(fā)生變化。這實際上保證了紅外光的能量能傳遞給分子,這種能量的傳遞是通過分子振動偶極矩的變化來實現(xiàn)的。并非所有的振動都會產(chǎn)生紅外吸收,只有偶極矩發(fā)生變化的振動才能引起可觀測的紅外吸收,這種振動稱為紅外活性振動;偶極矩等于零的分子振動不能產(chǎn)生紅外吸收,稱為紅外非活性振動。
分子的振動形式可以分為兩大類:伸縮振動和彎曲振動。前者是指原子沿鍵軸方向的往復運動,振動過程中鍵長發(fā)生變化。后者是指原子垂直于化學鍵方向的振動。通常用不同的符號表示不同的振動形式,例如,伸縮振動可分為對稱伸縮振動和反對稱伸縮振動,分別用 Vs 和Vas 表示。彎曲振動可分為面內(nèi)彎曲振動(δ)和面外彎曲振動(γ)。從理論上來說,每一個基本振動都能吸收與其頻率相同的紅外光,在紅外光譜圖對應的位置上出現(xiàn)一個吸收峰。實際上有一些振動分子沒有偶極矩變化是紅外非活性的;另外有一些振動的頻率相同,發(fā)生簡并;還有一些振動頻率超出了儀器可以檢測的范圍,這些都使得實際紅外譜圖中的吸收峰數(shù)目大大低于理論值。
組成分子的各種基團都有自己特定的紅外特征吸收峰。不同化合物中,同一種官能團的吸收振動總是出現(xiàn)在一個窄的波數(shù)范圍內(nèi),但它不是出現(xiàn)在一個固定波數(shù)上,具體出現(xiàn)在哪一波數(shù),與基團在分子中所處的環(huán)境有關。引起基團頻率位移的因素是多方面的,其中外部因素主要是分子所處的物理狀態(tài)和化學環(huán)境,如溫度效應和溶劑效應等。對于導致基團頻率位移的內(nèi)部因素,迄今已知的有分子中取代基的電性效應:如誘導效應、共軛效應、中介效應、偶極場效應等;機械效應:如質(zhì)量效應、張力引起的鍵角效應、振動之間的耦合效應等。這些問題雖然已有不少研究報道,并有較為系統(tǒng)的論述,但是,若想按照某種效應的結(jié)果來定量地預測有關基團頻率位移的方向和大小,卻往往難以做到,因為這些效應大都不是單一出現(xiàn)的。這樣,在進行不同分子間的比較時就很困難。
另外氫鍵效應和配位效應也會導致基團頻率位移,如果發(fā)生在分子間,則屬于外部因素,若發(fā)生在分子內(nèi),則屬于分子內(nèi)部因素。
紅外譜帶的強度是一個振動躍遷概率的量度,而躍遷概率與分子振動時偶極矩的變化大小有關,偶極矩變化愈大,譜帶強度愈大。偶極矩的變化與基團本身固有的偶極矩有關,故基團極性越強,振動時偶極矩變化越大,吸收譜帶越強;分子的對稱性越高,振動時偶極矩變化越小,吸收譜帶越弱。
想資訊更多島津紅外光譜儀相關信息我們客服。 上一篇 : 島津光譜儀的技術優(yōu)點 下一篇 : 島津熒光光譜儀的故障分析